Parallel Algorithm for Computing the Smith Normal Form of Large Matrices
نویسنده
چکیده
Smith normal form computation has many applications in group theory, module theory and number theory. As the entries of the matrix and of its corresponding transformation matrices can explode during the computation, it is a very difficult problem to compute the Smith normal form of large dense matrices. The computation has two main problems: the high execution time and the memory requirements, which might exceed the memory of one processor. To avoid these problems, we develop two parallel Smith normal form algorithms using MPI. These are the first algorithms computing the Smith normal form with corresponding transformation matrices, both over the rings Z and F[x]. We show that our parallel algorithms both have a good efficiency, i.e. by doubling the processes, the execution time is nearly halved, and succeed in computing the Smith normal form of dense example matrices over the rings Z and F2[x] with more than thousand rows and columns.
منابع مشابه
Parallel Algorithms for Computing the Smith Normal Form of Large Matrices
Smith normal form computation has many applications in group theory, module theory and number theory. As the entries of the matrix and of its corresponding transformation matrices can explode during the computation, it is a very difficult problem to compute the Smith normal form of large dense matrices. The computation has two main problems: the high execution time and the memory requirements, ...
متن کاملEfficient parallelizations of Hermite and Smith normal form algorithms
Hermite and Smith normal form are important forms of matrices used in linear algebra. These terms have many applications in group theory and number theory. As the entries of the matrix and of its corresponding transformation matrices can explode during the computation, it is a very difficult problem to compute the Hermite and Smith normal form of large dense matrices. The main problems of the c...
متن کاملFast Parallel Computation of Hermite and Smith Forms of Polynomial Matrices*
Boolean circuits of polynomial size and poly-logarithmic depth are given for computing the Hermite and Smith normal forms of polynomial matrices over finite fields and the field of rational numbers. The circuits for the Smith normal form computation are probabilistic ones and also determine very efficient sequential algorithms. Furthermore, we give a polynomial-time deterministic sequential alg...
متن کاملGreen Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003